eScholarship@UMMS

Syndicate content
Recent documents in eScholarship@UMMS
Updated: 2 hours 25 min ago

Association of labor induction or stimulation with infant mortality in women with failed versus successful trial of labor after prior cesarean

Fri, 07/12/2013 - 10:51am

Abstract Objective: To compare infant mortality rates among women with a failed versus successful trial of labor after cesarean (TOLAC) following labor induction or stimulation.

Study design: Using US linked birth and infant death cohort data (2000-2004), we identified women who delivered non-anomalous singleton births at 34-41 weeks with TOLAC whose labors were induced or stimulated. Multivariable log-binomial regression models were fitted to estimate the association between TOLAC success and infant mortality.

Results: Of the 164,113 women who underwent TOLAC, 41% were unsuccessful. After adjustment for potential confounding factors, a failed TOLAC was associated with a 1.4 fold (95% confidence interval [CI] 1.1, 1.7) increased risk of infant mortality.

Conclusions: Among women undergoing labor induction or stimulation, a failed TOLAC is associated with higher likelihood of infant mortality.

Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus

Fri, 07/12/2013 - 10:51am

Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.

Clusters of branched aliphatic side chains serve as cores of stability in the native state of the HisF TIM barrel protein

Fri, 07/12/2013 - 10:51am

Imidazole-3-glycerol phosphate synthase is a heterodimeric allosteric enzyme that catalyzes consecutive reactions in imidazole biosynthesis through its HisF and HisH subunits. The unusually slow unfolding reaction of the isolated HisF TIM barrel domain from the thermophilic bacteria, Thermotoga maritima, enabled an NMR-based site-specific analysis of the main-chain hydrogen bonds that stabilize its native conformation. Very strong protection against exchange with solvent deuterium in the native state was found in a subset of buried positions in alpha-helices and pervasively in the underlying beta-strands associated with a pair of large clusters of isoleucine, leucine and valine (ILV) side chains located in the alpha7(betaalpha)8(betaalpha)1-2 and alpha2(betaalpha)3-6beta7 segments of the (betaalpha)8 barrel. The most densely packed region of the large cluster, alpha3(betaalpha)4-6beta7, correlates closely with the core of stability previously observed in computational, protein engineering and NMR dynamics studies, demonstrating a key role for this cluster in determining the thermodynamic and structural properties of the native state of HisF. When considered with the results of previous studies where ILV clusters were found to stabilize the hydrogen-bonded networks in folding intermediates for other TIM barrel proteins, it appears that clusters of branched aliphatic side chains can serve as cores of stability across the entire folding reaction coordinate of one of the most common motifs in biology.

ACR-12 ionotropic acetylcholine receptor complexes regulate inhibitory motor neuron activity in Caenorhabditis elegans

Fri, 07/12/2013 - 10:51am

Heterogeneity in the composition of neurotransmitter receptors is thought to provide functional diversity that may be important in patterning neural activity and shaping behavior (Dani and Bertrand, 2007; Sassoe-Pognetto, 2011). However, this idea has remained difficult to evaluate directly because of the complexity of neuronal connectivity patterns and uncertainty about the molecular composition of specific receptor types in vivo. Here we dissect how molecular diversity across receptor types contributes to the coordinated activity of excitatory and inhibitory motor neurons in the nematode Caenorhabditis elegans. We show that excitatory and inhibitory motor neurons express distinct populations of ionotropic acetylcholine receptors (iAChRs) requiring the ACR-12 subunit. The activity level of excitatory motor neurons is influenced through activation of nonsynaptic iAChRs (Jospin et al., 2009; Barbagallo et al., 2010). In contrast, synaptic coupling of excitatory and inhibitory motor neurons is achieved through a second population of iAChRs specifically localized at postsynaptic sites on inhibitory motor neurons. Loss of ACR-12 iAChRs from inhibitory motor neurons leads to reduced synaptic drive, decreased inhibitory neuromuscular signaling, and variability in the sinusoidal motor pattern. Our results provide new insights into mechanisms that establish appropriately balanced excitation and inhibition in the generation of a rhythmic motor behavior and reveal functionally diverse roles for iAChR-mediated signaling in this process.

SnapShot: inflammasomes

Fri, 07/12/2013 - 10:51am

Coordinated cell type-specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood

Fri, 07/12/2013 - 10:51am

Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type-specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation--H3 with trimethylated lysine 4 (H3K4me3)--in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax) and multiple Signal Transducer and Activator of Transcription (STAT) motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1) recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal cortex from the late prenatal period to early adolescence, which is linked to cis-regulatory sequences around transcription start sites.

Monoaminergic orchestration of motor programs in a complex C. elegans behavior

Fri, 07/12/2013 - 10:51am

Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Galphao pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.

Skin perfusion and oxygenation changes in radiation fibrosis

Fri, 07/12/2013 - 10:51am

BACKGROUND: Ionizing radiation is known to have deleterious chronic effects on skin, including fibrosis and poor wound healing, hypothesized as mediated by ischemia and hypoxia. Past studies have been unable to simultaneously investigate changes in perfusion and oxygenation as separate parameters. Hyperspectral imaging has emerged as a tool with which to concurrently measure skin perfusion and oxygenation. The authors investigated the use of hyperspectral imaging in a novel murine model of chronic radiation injury.

METHODS: Areas of flank skin (n = 20) on hairless mice were exposed to a 50-Gy dose of beta-radiation. Hyperspectral imaging acquisition was performed at select points through 8 weeks. Immunohistochemical staining and gene expression analysis were performed to evaluate cutaneous vascular density, epidermal cell hypoxia, and angiogenic factors.

RESULTS: All irradiated areas developed a chronic-phase wound by day 28. Hyperspectral imaging demonstrated a 21 percent decline in perfusion on day 56 (p < 0.001), whereas oxygenation levels were unchanged. A 1.7-fold reduction in blood vessel density was measured in irradiated skin compared with control tissue (p < 0.001), but no difference in epidermal cell hypoxia was observed. Vascular endothelial growth factor and related receptor expression were significantly lower in irradiated tissue.

CONCLUSIONS: The authors' analysis does not support the presence of hypoxia in chronic-phase irradiated skin but suggests that hypoperfusion may be a predominant characteristic. The concurrent states of hypoperfusion and normoxia may be explained by the lower metabolic demands of fibrosed tissue.

Renal biopsy: comparative yield of cranial versus caudal needle trajectory. An ex vivo analysis

Fri, 07/12/2013 - 10:51am

AIM: To compare the diagnostic quality of tissue cores obtained using cranial and caudal angulation of the renal biopsy needle. Comparison was made in terms of the number of glomeruli and proportion of renal cortex with medulla on pathological analysis.

METHODS: A total of 40 desktop, renal biopsies were performed on 10 ex vivo porcine kidneys using two different targeting angles. Biopsies were obtained from the 'lower pole' of each kidney using both cephalad and caudad angulations of the biopsy needle. Ten 18-gauge semi-automated cutting needles were used during twenty biopsies obtained per each angle; two biopsies were made using each needle. The resulting samples were collected in 40 separate and labelled formalin containers according to the used targeting angle. Two pathologists blinded to the corresponding biopsy angles reviewed the samples in consensus.

RESULTS: Samples with a cephalad targeting angle had a mean length of 14.5 mm with mean number of 9.6 glomeruli and average 82% cortex and 18% medulla. Samples obtained using a caudad needle angulation had a mean length of 14.1 mm with mean number of 11.6 glomeruli and on the average 99% cortex. The P-values comparing the two samples were as follows: 0.63 comparing the mean length of cores, 0.08 for number of glomeruli and 0.002 comparing the proportion of cortex.

CONCLUSION: The proportion of cortical tissue in the core biopsy specimen using the caudad angle approach was statistically significantly higher, compared with the cephalad needle trajectory.

Translational control of cell growth and malignancy by the CPEBs

Fri, 07/12/2013 - 10:51am

The cytoplasmic polyadenylation element binding proteins (CPEBs) associate with specific sequences in mRNA 3' untranslated regions to promote translation. They do so by inducing cytoplasmic polyadenylation, which requires specialized poly(A) polymerases. Aberrant expression of these proteins correlates with certain types of cancer, indicating that cytoplasmic RNA 3' end processing is important in the control of growth. Several CPEB-regulated mRNAs govern cell cycle progression, regulate senescence, establish cell polarity, and promote tumorigenesis and metastasis. In this Opinion article, we discuss the emerging evidence that indicates a key role for the CPEBs in cancer biology.

Women's perspectives on postpartum depression screening in pediatric settings: a preliminary study

Thu, 07/11/2013 - 3:51pm

This preliminary study is the first to identify mothers' perspectives on barriers and facilitators to addressing postpartum depression (PPD) in pediatric settings. We conducted four 90-min focus groups with women (n = 27) who self-identified a history of perinatal depression and/or emotional complications. Barriers reported included stigma and fear among women and lack of provider knowledge/skills regarding depression. Participants recommended non-stigmatizing approaches to depression screening/referral. Future PPD screening efforts should leverage the pediatrician-mother relationship to mitigate mothers' fears and encourage help-seeking.

Vitamin D status is associated with early markers of cardiovascular disease in prepubertal children

Wed, 07/10/2013 - 11:40am

Background: The associations of 25-hydroxyvitamin D [25(OH)D], non-high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL), and related markers of early cardiovascular disease (CVD) are unclear in prepubertal children.

Objective: To investigate the association of 25(OH)D with markers of CVD. The hypothesis was that 25(OH)D would vary inversely with non-HDL-C.

Subjects and methods: A prospective cross-sectional study of children (n=45; 26 males, 19 females) of mean age 8.3±2.5 years to investigate the relationships between 25(OH)D and glucose, insulin, high-sensitivity C-reactive protein, and lipids. Vitamin D deficiency was defined as 25(OH)D/mL; overweight as body mass index (BMI) ≥85th but <95th >percentile; and obesity as BMI >95th percentile.

Results: Twenty subjects (44.4%) had BMI30 ng/mL. Patients with 25(OH)D of/mL had significantly elevated non-HDL-C (136.08±44.66 vs. 109.88±28.25, p=0.025), total cholesterol (TC)/HDL ratio (3.89±1.20 vs. 3.21±0.83, p=0.042), and triglycerides (TG) (117.09±71.27 vs. 73.39±46.53, p=0.024), while those with 25(OH)D of >30 ng/mL had significantly lower non-HDL-C, TC/HDL, TG, and LDL (82.40±18.03 vs. 105.15±28.38, p=0.006). Multivariate analysis showed significant inverse correlations between 25(OH)D and non-HDL cholesterol (β=-0.337, p=0.043), and TC/HDL ratio (β=-0.339, p=0.028), and LDL (β=-0.359, p=0.016), after adjusting for age, race, sex, BMI, and seasonality.

Conclusions: Vitamin D varied inversely with non-HDL, TC/HDL, and LDL. A 25(OH)D level of 30 ng/mL is associated with optimal cardioprotection in children.

Modulators of the Acute Inflammatory Response: A Dissertation

Wed, 07/03/2013 - 9:36am

Acute inflammatory response is caused by the rapid recruitment of leukocytes, mainly neutrophils and monocytes, from blood to the tissue site. Diverse agents, including invading pathogens, injured or dead cells, and other irritants, may stimulate this response. In the ensuing inflammatory response, the recruited leukocytes and their secreted molecules help in eliminating or containing the injurious agents and promoting tissue regeneration. But often this response is imprecise and can lead to bystander tissue damage. Unchecked neutrophil activation is implicated in the pathology of many inflammatory conditions. An in-depth understanding of the pathways regulating this response, therefore, becomes critical in identifying therapeutic targets for these diseases. In this study, we investigate the role of intestinal commensal bacteria in regulating the acute inflammatory response. Furthermore, we examine the mechanism by which Interleukin-1 (IL-1) controls the inflammatory response to sterile agents.

Inflammatory responses have been studied in the context of host defense against pathogens. However, we report that the innate immune system needs to be primed by intestinal flora to enable neutrophil recruitment to diverse microbial or sterile inflammatory signals. This priming requires myeloid differentiation primary response gene (88) (MyD88) signaling. In antibiotic-treated mice, which have depleted intestinal flora, we show that neutrophils get released into the blood from the bone marrow, but have a specific defect in migration into the inflammed tissue. This deficiency can be restored by pre-stimulating the mice with a purified MyD88 ligand. Despite having reduced number of infiltrating neutrophils, antibiotic-treated mice make higher levels of pro-inflammatory cytokines in the tissue, after inflammatory challenge. This suggests that antibiotic-treated mice produce some anti-inflammatory molecule(s) that counteract the effect of the pro-inflammatory cytokines. However, this effect is not due to the overproduction of the anti-inflammatory cytokine, Interleukin-10 (IL-10). In summary, our findings highlight the role of commensals in the development of acute inflammatory responses to microbial and sterile particles.

The inflammatory response to sterile dead cells has been shown to be critically dependent upon IL-1. However, several key aspects of the IL-1 signaling cascade including the source of IL-1 and the cellular target of IL-1 were unresolved. We find that in most cases, the injured cells are not a major contributor of IL-1 that is required to propagate the inflammatory signal. On the contrary, we demonstrate that both the isoforms of IL-1, IL-1α/IL-1β are generated by bone marrow-derived, tissue-resident responding cells, upon sensing the injury. We also sought to determine the identity of the cellular target of IL-1 signaling. Previous studies have shown that for cell death-induced neutrophil recruitment, interleukin-1 receptor (IL-1R) expression is required on parenchymal cells. To identify this parenchymal cell, we are currently in the process of making the conditional knockout mouse of IL-1R. The latter would facilitate the parenchymal tissue-specific deletion of IL-1R. In summary, this study reports our progress in unraveling key aspects of IL-1 signaling during sterile inflammation.

Taken together, we have identified key modulators of the acute inflammatory response and their mechanisms of regulation. These findings would facilitate the development of new therapies for inflammatory diseases triggered by both microbe and sterile agents.

Runx Expression in Normal and Osteoarthritic Cartilage: Possible Functions of Runx Proteins in Chondrocytes: A Dissertation

Wed, 07/03/2013 - 9:36am

The Runx family of transcription factors supports cell fate determination, cell cycle regulation, global protein synthesis control, and genetic as well as epigenetic regulation of target genes. Runx1, which is essential for hematopoiesis; Runx2, which is required for osteoblast differentiation; and Runx3, which is involved in neurologic and gut development; are expressed in the growth plate during chondrocyte maturation, and in the chondrocytes of permanent cartilage structures. While Runx2 is known to control genes that contribute to chondrocyte hypertrophy, the functions of Runx1 and Runx3 during chondrogenesis and in cartilage tissue have been less well studied.

The goals of this project were to characterize expression of Runx proteins in articular cartilage and differentiating chondrocytes and to determine the contribution of Runx1 to osteoarthritis (OA). Here, the expression pattern of Runx1 and Runx2 was characterized in normal bovine articular cartilage. Runx2 is expressed at higher levels in deep zone chondrocytes, while Runx1 is primarily expressed in superficial zone chondrocytes, which is the single cell layer that lines the surface of articular cartilage. Based on this finding, the hypothesis was tested that Runx1 is involved in osteoarthritis, which is a disease characterized by degradation of articular cartilage and changes in chondrocytes. These studies showed that Runx1 is upregulated in articular cartilage explants in response to mechanical compression. Runx1 was also expressed in chondrocytes found at the periphery of OA lesions in the articular cartilage of mice that underwent an OA-inducing surgery. Runx1 was also upregulated in cartilage explants of human osteoarthritic knees, and IHC data showed that Runx1 is mainly expressed in chondrocyte “clones” characteristic of OA.

To ascertain the potential function of the upregulation of Runx1 in these cartilage stress conditions and disease states, the hypothesis was tested that Runx1 is upregulated in very specific chondrocyte populations in response to the cartilage damage in osteoarthritis. These studies addressed the properties of these cells that related to functions in cell growth and differentiation. In both the surface layer of normal articular cartilage, and in OA cartilage, Runx1 expression by IF co-localized with markers of mesenchymal progenitor cells, as well as markers of proliferation Ki-67 and PCNA. This finding indicated that Runx1 is found in a population of cells that represent a proliferative population of mesenchymal progenitor cells in osteoarthritis.

To further address Runx1 function and identify downstream targets of Runx proteins, a promoter analysis of genes that are known to be either downregulated or upregulated during chondrocyte maturation was done. These studies found that many of these genes have 1 or more Runx binding sites within 2kb of their transcription start site, indicating that they are potential downstream Runx target genes.

Lastly, some preliminary experiments were done to characterize novel roles of Runx proteins in the chondrocyte. Runx proteins have been shown to epigenetically regulate their target genes by remaining bound to them throughout mitosis, “poising” them for transcription upon exit from mitosis. The hypothesis that Runx proteins also function by remaining bound to their target genes throughout mitosis in chondrocytes was tested. It was demonstrated by immunofluorescense imaging of Runx proteins on metaphase chromosomes of ATDC5 cells, that Runx2 remains bound to chromosomes during mitosis.

Cell proliferation and hypertrophy are both linked to increases in protein synthesis. Runx factors, which regulate rates of global protein synthesis, are expressed in both proliferating and hypertrophic chondrocytes. Thus, it was hypothesized that Runx proteins regulate rates of global protein synthesis during chondrocyte maturation. These studies showed that the overexpression of Runx proteins in a chondrocyte cell line (ATDC5) did not affect protein synthesis rates or levels of protein synthesis machinery. Additionally, Runx proteins did not affect proliferation rates in this chondrocyte cell line.

Understanding Neural Networks in Awake Rat by Resting-State Functional MRI: A Dissertation

Wed, 07/03/2013 - 9:36am

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging technique that utilizes spontaneous low-frequency fluctuations of blood-oxygenation-level dependent (BOLD) signals to examine resting-state functional connectivity in the brain. In the past two decades, this technique has been increasingly utilized to investigate properties of large-scale functional neural networks as well as their alterations in various cognitive and disease states. However, much less is known about large-scale functional neural networks of the rodent brain, particularly in the awake state. Therefore, we attempted to unveil local and global functional connectivity in awake rat through a combination of seed-based analysis, independent component analysis and graph-theory analysis. In the current studies, we revealed elementary local networks and their global organization in the awake rat brain. We further systematically compared the functional neural networks in awake and anesthetized states, revealing that the rat brain was locally reorganized while maintaining global topological properties from awake to anesthetized states. Furthermore, specific neural circuitries of the rat brain were examined using resting-state fMRI. First anticorrelated functional connectivity between infralimbic cortex and amygdala were found to be evident with different preprocessing methods (global signal regression, regression of ventricular and white matter signal and no signal regression). Secondly the thalamocortical connectivity was mapped for individual thalamic groups, revealing group-specific functional cortical connections that were generally consistent with known anatomical connections in rat. In conclusion, large-scale neural networks can be robustly and reliably studied using rs-fMRI in awake rat, and with this technique we established a baseline of local and global neural networks in the awake rat brain as well as their alterations in the anesthetized condition.

Application of a Naïve Bayes Classifier to Assign Polyadenylation Sites from 3' End Deep Sequencing Data: A Dissertation

Wed, 07/03/2013 - 9:36am

Cleavage and polyadenylation of a precursor mRNA is important for transcription termination, mRNA stability, and regulation of gene expression. This process is directed by a multitude of protein factors and cis elements in the pre-mRNA sequence surrounding the cleavage and polyadenylation site. Importantly, the location of the cleavage and polyadenylation site helps define the 3’ untranslated region of a transcript, which is important for regulation by microRNAs and RNA binding proteins. Additionally, these sites have generally been poorly annotated. To identify 3’ ends, many techniques utilize an oligo-dT primer to construct deep sequencing libraries. However, this approach can lead to identification of artifactual polyadenylation sites due to internal priming in homopolymeric stretches of adenines. Previously, simple heuristic filters relying on the number of adenines in the genomic sequence downstream of a putative polyadenylation site have been used to remove these sites of internal priming. However, these simple filters may not remove all sites of internal priming and may also exclude true polyadenylation sites. Therefore, I developed a naïve Bayes classifier to identify putative sites from oligo-dT primed 3’ end deep sequencing as true or false/internally primed. Notably, this algorithm uses a combination of sequence elements to distinguish between true and false sites. Finally, the resulting algorithm is highly accurate in multiple model systems and facilitates identification of novel polyadenylation sites.

Specific Requirement of Gli Transcription Factors in Hedgehog-mediated Intestinal Development

Tue, 07/02/2013 - 3:33pm

Hedgehog (Hh) signaling is involved in multiple aspects of embryonic gut development, including mesenchymal growth and smooth muscle differentiation. The Gli family transcription factors is thought to collectively mediate Hh signaling in mammals. However, the function of different Gli proteins in gut development remains uncharacterized. Here, we genetically dissect the contribution of Gli transcriptional activation and de-repression in intestinal growth and patterning. We find that removal of the Gli3 repressor is dispensable for intestinal development and does not play a major role in Hh-controlled gut development. However, Gli2 activation is able to fully rescue the Smoothened (Smo)-null intestinal phenotype, suggesting that the Gli2 transcription factor is the main effector for Hh signaling in the intestine. To understand further the molecular mechanism underlying Hh/Gli function in the developing gut, we identify a subset of small leucine-rich glycoproteins (SLRPs) that may function downstream of Hh signaling in the mesenchyme. We show that osteoglycin, a SLRP, inhibits Hh-induced differentiation toward the smooth muscle lineage in C3H10T1/2 pluripotent mesenchymal cells. Taken together, our study reveals, for the first time, the distinct roles of Gli proteins in intestine development and suggests SLRPs as novel regulators of smooth muscle cell differentiation.

X-ray phase contrast imaging of the breast: analysis of tissue simulating materials

Tue, 07/02/2013 - 2:43pm

PURPOSE: Phase contrast imaging, particularly of the breast, is being actively investigated. The purpose of this work is to investigate the x-ray phase contrast properties of breast tissues and commonly used breast tissue substitutes or phantom materials with an aim of determining the phantom materials best representative of breast tissues.

METHODS: Elemental compositions of breast tissues including adipose, fibroglandular, and skin were used to determine the refractive index, n = 1 - delta + i beta. The real part of the refractive index, specifically the refractive index decrement (delta), over the energy range of 5-50 keV were determined using XOP software (version 2.3, European Synchrotron Radiation Facility, France). Calcium oxalate and calcium hydroxyapatite were considered to represent the material compositions of microcalcifications in vivo. Nineteen tissue substitutes were considered as possible candidates to represent adipose tissue, fibroglandular tissue and skin, and four phantom materials were considered as possible candidates to represent microcalcifications. For each material, either the molecular formula, if available, or the elemental composition based on weight fraction, was used to determine delta. At each x-ray photon energy, the absolute percent difference in delta between the breast tissue and the substitute material was determined, from which three candidates were selected. From these candidate tissue substitutes, the material that minimized the absolute percent difference in linear attenuation coefficient mu, and hence beta, was considered to be best representative of that breast tissue.

RESULTS: Over the energy range of 5-50 keV, while the delta of CB3 and fibroglandular tissue-equivalent material were within 1% of that of fibroglandular tissue, the mu of fibroglandular tissue-equivalent material better approximated the fibroglandular tissue. While the delta of BR10 and adipose tissue-equivalent material were within 1% of that of adipose tissue, the tissue-equivalent material better approximated the adipose tissue in terms of mu. Polymethyl methacrylate, a commonly used tissue substitute, exhibited delta greater than fibroglandular tissue by approximately 12%. The A-150 plastic closely approximated the skin. Several materials exhibited delta between that of adipose and fibroglandular tissue. However, there was an energy-dependent mismatch in terms of equivalent fibroglandular weight fraction between delta and mu for these materials. For microcalcifications, aluminum and calcium carbonate were observed to straddle the delta and mu of calcium oxalate and calcium hydroxyapatite. Aluminum oxide, commonly used to represent microcalcifications in the American College of Radiology recommended phantoms for accreditation exhibited delta greater than calcium hydroxyapatite by approximately 23%.

CONCLUSIONS: A breast phantom comprising A-150 plastic to represent the skin, commercially available adipose and fibroglandular tissue-equivalent formulations to represent adipose and fibroglandular tissue, respectively, was found to be best suited for x-ray phase-sensitive imaging of the breast. Calcium carbonate or aluminum can be used to represent microcalcifications.

Generation of voxelized breast phantoms from surgical mastectomy specimens

Tue, 07/02/2013 - 2:43pm

PURPOSE: In the research and development of dedicated tomographic breast imaging systems, digital breast object models, also known as digital phantoms, are useful tools. While various digital breast phantoms do exist, the purpose of this study was to develop a realistic high-resolution model suitable for simulating three-dimensional (3D) breast imaging modalities. The primary goal was to design a model capable of producing simulations with realistic breast tissue structure.

METHODS: The methodology for generating an ensemble of digital breast phantoms was based on imaging surgical mastectomy specimens using a benchtop, cone-beam computed tomography system. This approach allowed low-noise, high-resolution projection views of the mastectomy specimens at each angular position. Reconstructions of these projection sets were processed using correction techniques and diffusion filtering prior to segmentation into breast tissue types in order to generate phantoms.

RESULTS: Eight compressed digital phantoms and 20 uncompressed phantoms from which an additional 96 pseudocompressed digital phantoms with voxel dimensions of 0.2 mm(3) were generated. Two distinct tissue classification models were used in forming breast phantoms. The binary model classified each tissue voxel as either adipose or fibroglandular. A multivalue scaled model classified each tissue voxel as percentage of adipose tissue (range 1%-99%). Power spectral analysis was performed to compare simulated reconstructions using the breast phantoms to the original breast specimen reconstruction, and fits were observed to be similar.

CONCLUSIONS: The digital breast phantoms developed herein provide a high-resolution anthropomorphic model of the 3D uncompressed and compressed breast that are suitable for use in evaluating and optimizing tomographic breast imaging modalities. The authors believe that other research groups might find the phantoms useful, and therefore they offer to make them available for wider use.

Nile grass rats see the light of day

Tue, 07/02/2013 - 2:43pm